

Please write clearly in block capitals.		
Centre number	Candidate number	
Surname		
Forename(s)		
Candidate signature I declare this is my	own work.	

A-level **MATHEMATICS**

Paper 2

Tuesday 11 June 2024

Afternoon

Time allowed: 2 hours

Materials

- You must have the AQA Formulae for A-level Mathematics booklet
- You should have a graphical or scientific calculator that meets the requirements of the specification.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer each question in the space provided for that question.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do not write outside the box around each page or on blank pages.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 100.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

For Examiner's Use			
Question	Mark		
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
TOTAL			

Section A

Answer all questions in the spaces provided.

1 One of the equations below is the equation of a circle.

Identify this equation.

[1 mark]

Tick (\checkmark) one box.

$$(x + 1)^2 - (y + 2)^2 = -36$$

$$(x + 1)^2 - (y + 2)^2 = 36$$

$$(x + 1)^2 + (y + 2)^2 = -36$$

$$(x + 1)^2 + (y + 2)^2 = 36$$

The graph of y = f(x) intersects the *x*-axis at (-3, 0), (0, 0) and (2, 0) as shown in the diagram below.

The shaded region A has an area of 189

The shaded region B has an area of 64

Find the value of $\int_{-3}^{2} f(x) dx$

Circle your answer.

[1 mark]

-253

-125

125

253

Turn over for the next question

Do	not	V	vri	ite
ou	tside	Э	th	е
	ho	x		

3	Solve the inequality	(1-x)(x-4)<0	[1 mark]
	Tick (√) one box.		
	${x: x < 1} \cup {x: x > 4}$		
	${x: x < 1} \cap {x: x > 4}$		
	$\{x: x < 1\} \cup \{x: x \ge 4\}$		
	$\{x: x < 1\} \cap \{x: x \ge 4\}$		

4	Use logarithms to solve the equation				
7	Use logarithms to solve the equation				
	$5^{x-2} = 7^{1570}$				
	J - 1				
	Give your answer to two decimal places.				
	[3 marks]				
	[o marko]				
	Turn over for the next question				
	rum over for the next question				

Do	not	write
ou	tside	e the
	ho	Y

5	Given that	•	
		$y = \frac{x^3}{\sin x}$	
	dv	$\int_{0}^{\infty} \sin x$	
	find $\frac{dy}{dx}$		
	ux		[3 marks]

6	It is given that $(2\sin\theta+3\cos\theta)^2+(6\sin\theta-\cos\theta)^2=30$	
	and that $ heta$ is obtuse.	
	Find the exact value of $\sin \theta$.	
	Fully justify your answer.	
		6 marks]

00	not	V	vrite
วน	tside	Э	the
	ho	v	

7 On the first day of each month, Kate pays £50 into a savings account.

Interest is paid on the total amount in the account on the last day of each month.

The interest rate is 0.2%

At the end of the nth month, the total amount of money in Kate's savings account is $\mathfrak{L}T_n$

Kate correctly calculates T_1 and T_2 as shown below:

$$T_1 = 50 \times 1.002 = 50.10$$

$$T_2 = (T_1 + 50) \times 1.002$$

= $((50 \times 1.002) + 50) \times 1.002$
= $50 \times 1.002^2 + 50 \times 1.002$
 ≈ 100.30

7 (a) Show that T_3 is given by

$$T_3 = 50 \times 1.002^3 + 50 \times 1.002^2 + 50 \times 1.002$$

[1 mark]

7 (b)	Kate uses her method to correctly calculate how much money she can expect to have
	in her savings account at the end of 10 years .

7 (b) (i)	Find the amount of money Kate expects to have in her savings account at the end
	of 10 years.

[3 marks]

		Do not we outside to box
		ZOX
(b) (ii)	The amount of money in Kate's savings account at the end of 10 years may not be the amount she has correctly calculated.	
	Explain why.	
	[1 mark]	
	Turn over for the next question	
	Turn over for the next question	

8 A zookeeper models the median mass of infant monkeys born at their zoo, up to the age of 2 years, by the formula

$$y = a + b \log_{10} x$$

where y is the median mass in kilograms, x is age in months and a and b are constants.

The zookeeper uses the data shown below to determine the values of a and b.

Age in months (x)	3	24
Median mass (y)	6.4	12

8 (a)	The zookeeper	uses the data	for monkeys	aged 3	months to	write the	correct	equatior
-------	---------------	---------------	-------------	--------	-----------	-----------	---------	----------

$$6.4 = a + b \log_{10} 3$$

8 (a) (i)	Use the data for monkeys	aged 24 months to write	a second equation
-----------	--------------------------	-------------------------	-------------------

[1 mark]

8 (a) (ii) Show that

$$b = \frac{5.6}{\log_{10} 8}$$

13 marks	[3	mar	ks]
----------	----	-----	-----

		Do not write outside the
		box
8 (a) (iii)	Find the value of <i>a</i> .	
	Give your answer to two decimal places.	
	[1 mark]	
	Question 8 continues on the next question	

 	- j = 1000 man	one week old.	[2 m

Do not write outside the box Turn over for the next question DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

14 **9 (a) (i)** Find the binomial expansion of $(1 + 3x)^{-1}$ up to and including the term in x^2 [2 marks] 9 (a) (ii) Show that the first three terms in the binomial expansion of form a geometric sequence and state the common ratio. [5 marks]

It is given that	
$\frac{36x}{(4-2x)(2-2x)} \equiv \frac{P}{(2-2x)} + \frac{Q}{(4-2x)}$	
and an Devel O and Internet	
where P and Q are integers.	
where P and Q are integers. Find the value of P and the value of Q	[2 marke]
	[3 marks]
	It is given that $\frac{36x}{(1+3x)(2-3x)} \equiv \frac{P}{(2-3x)} + \frac{Q}{(1+3x)}$

		Do not v outside box
(c) (i)	Using your answers to parts (a) and (b), find the binomial expansion of	
	$\frac{12x}{(1+3x)(2-3x)}$	
	up to and including the term in x^2 [2 marks]	1

3 (C) (II)	Find the range of values of x for which the binomial expansion of	
	$\frac{12x}{(1+3x)(2-3x)}$	
	is valid.	
	[1	mark]
	Turn over for the next question	

	$f(x) = x^2 + 2\cos x$	for $-\pi \le x \le \pi$
Determine whether the where $x = 0$	e curve with equation y	= f(x) has a point of inflection at
Fully justify your answ	/er.	

Turn over for the next question DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

11 (a)	A studer	nt states that 3 is the smallest value of k in the interval $3 < k < 4$	
	Explain	the error in the student's statement. [1 mail	rk]
			
11 (b)		dent's teacher says there is no smallest value of k in the interval $3 < k < 4$	
	The tead	cher gives the following correct proof:	
	Step 1:	Assume there is a smallest number in the interval 3 $<$ k $<$ 4 and let this smallest number be x	
	Step 2:	$let y = \frac{3+x}{2}$	
	Step 3:	3 < y < x which is a contradiction.	
	Step 4:	Therefore, there is no smallest number in interval $3 < k < 4$	
11 (b) (i)	Explain	the contradiction stated in Step 3	
		[1 mai	rk]
			

l1 (b) (ii)	Prove that there is no largest value of k in the interval $3 < k < 4$	
		[4 marks]
	END OF SECTION A	
	TURN OVER FOR SECTION B	

Section B

Answer **all** questions in the spaces provided.

Two constant forces act on a particle, of mass 2 kilograms, so that it moves forward in a straight line.

The two forces are:

- a forward driving force of 10 newtons
- a resistance force of 4 newtons.

Find the acceleration of the particle.

Circle your answer.

[1 mark]

 2 m s^{-2} 3 m s^{-2} 5 m s^{-2} 12 m s^{-2}

13 A car starting from rest moves forward in a straight line. The motion of the car is modelled by the velocity-time graph below: One of the following assumptions about the motion of the car is implied by the graph. Identify this assumption. [1 mark] Tick (\checkmark) one box. The car never accelerates. The acceleration of the car is always positive. The acceleration of the car can change instantaneously. The acceleration of the car is never constant.

14	The displacement, r metres, of a particle at time t seconds is	
	$r = 6t - 2t^2$	
14 (a)	Find the value of r when $t = 4$	
()		[1 mark]
14 (b)	Determine the range of values of t for which the displacement is positive.	
, ,		[2 marks]

25	
Two forces, F ₁ and F ₂ , are acting on a particle of mass 3 kilograms.	
It is given that	
$\mathbf{F_1} = \begin{bmatrix} a \\ 23 \end{bmatrix}$ newtons and $\mathbf{F_2} = \begin{bmatrix} 4 \\ b \end{bmatrix}$ newtons	
where a and b are constants.	
The particle has an acceleration of $\begin{bmatrix} 4b \\ a \end{bmatrix}$ m s ⁻²	
Find the value of a and the value of b	[4 marks]

16	In this question use $g=9.8~{ m m~s^{-2}}$
	An apple tree stands on horizontal ground.
	An apple hangs, at rest, from a branch of the tree.
	A second apple also hangs, at rest, from a different branch of the tree.
	The vertical distance between the two apples is d centimetres.
	At the same instant both apples begin to fall freely under gravity.
	The first apple hits the ground after 0.5 seconds.
	The second apple hits the ground 0.1 seconds later.
	Show that d is approximately 54
	[4 marks]

	Do not write outside the
	box
	-
	-
	-
	-
	-
	-
Turn over for the next question	
·	

Do not write
outside the
hov

17 A uniform rod is resting on two fixed supports at points A and B.

A lies at a distance *x* metres from one end of the rod.

B lies at a distance (x + 0.1) metres from the other end of the rod.

The rod has length 2L metres and mass m kilograms.

The rod lies horizontally in equilibrium as shown in the diagram below.

The reaction force of the support on the rod at B is twice the reaction force of the support on the rod at A.

Show that

$$L - x = k$$

where k is a constant to be found.	[4 marks]

	Do not write outside the
	box
Turn over for the next question	

18	A particle is moving in a straight line through the origin ${\it O}$
	The displacement of the particle, r metres, from O , at time t seconds is given by
	$r = p + 2t - qe^{-0.2t}$
	where p and q are constants.
	When $t = 3$, the acceleration of the particle is -1.8 m s^{-2}
18 (a)	Show that $q \approx$ 82 [5 marks]

b)	The particle has an initial displacement of 5 metres.	Do out
	Find the value of <i>p</i>	
	Give your answer to two significant figures.	[2 marks]
	Turn over for the next question	

		_
19	In this question use $g=9.8~{\rm m~s^{-2}}$	
	A toy shoots balls upwards with an initial velocity of 7 m s^{-1}	
	The advertisement for this toy claims the balls can reach a maximum height of 2.5 metres from the ground.	
19 (a)	Suppose that the toy shoots the balls vertically upwards.	
19 (a) (i)	Verify the claim in the advertisement. [2 marks]	
19 (a) (ii)	State two modelling assumptions you have made in verifying this claim. [2 marks]	

In fact the toy shoots the	balls anywhere between 0 and 11 degrees from the ${\bf ve}$
The range of maximum h the balls may be express	neights, h metres, above the ground which can be reached as
	$k < h \le 2.5$
Find the value of k	F.4
	[4
Tur	n over for the next question

arks]

20 (b)	Stevie says	
	Q is also moving with a constant velocity of $(3i + 4j)$ m s ⁻¹	
	Explain why Stevie may be incorrect.	
	Explain why stevie may be morreot.	[1 mark]
	Question 20 continues on the next page	

not	write
tside	e the
box	X
	tside

A third particle R is moving with a constant speed of 4 m s ⁻¹ , in a straight line, across the same surface.
P and R move along lines that intersect at a fixed point X
It is given that: P passes through X exactly 2 seconds after R passes through X P and R are exactly 13 metres apart 3 seconds after R passes through X
Show that <i>P</i> and <i>R</i> move along perpendicular lines. [5 marks]

37

	D- ' "
	Do not write outside the
	box
Turn over for the next question	
·	

Two heavy boxes, *M* and *N*, are connected securely by a length of rope.

The mass of M is 50 kilograms.

The mass of *N* is 80 kilograms.

M is placed near the bottom of a rough slope.

The slope is inclined at 60° above the horizontal.

The rope is passed over a smooth pulley at the top end of the slope so that *N* hangs with the rope vertical.

The boxes are initially held in this position, with the rope taut and running parallel to the line of greatest slope, as shown in the diagram below.

When the boxes are released, $\it M$ moves up the slope as $\it N$ descends, with acceleration $\it a$ m s⁻²

The tension in the rope is *T* newtons.

21 (a) Explain why the equation of motion for N is

80g - T = 80a	[1 mark

		Do not write
21 (b)	Show that the normal reaction force between $\it M$ and the slope is 25 $\it g$ newtons. [1 mark]	outside the box
	Question 21 continues on the next page	

The coefficient of friction, μ , between the slope and M is such that $0 \le \mu \le 1$	
Show that	
$a \ge \frac{(11 - 5\sqrt{3})g}{26}$	
<i>a</i> ≥ 26	50
	[6 mar

Do not write outside the box

21 (d)	State one modelling assumption you have made throughout this question.	[1 mark
	END OF QUESTIONS	

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2024 AQA and its licensors. All rights reserved.

